Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746140

RESUMO

Accurate prediction of the functional impact of missense variants is important for disease gene discovery, clinical genetic diagnostics, therapeutic strategies, and protein engineering. Previous efforts have focused on predicting a binary pathogenicity classification, but the functional impact of missense variants is multi-dimensional. Pathogenic missense variants in the same gene may act through different modes of action (i.e., gain/loss-of-function) by affecting different aspects of protein function. They may result in distinct clinical conditions that require different treatments. We developed a new method, PreMode, to perform gene-specific mode-of-action predictions. PreMode models effects of coding sequence variants using SE(3)-equivariant graph neural networks on protein sequences and structures. Using the largest-to-date set of missense variants with known modes of action, we showed that PreMode reached state-of-the-art performance in multiple types of mode-of-action predictions by efficient transfer-learning. Additionally, PreMode's prediction of G/LoF variants in a kinase is consistent with inactive-active conformation transition energy changes. Finally, we show that PreMode enables efficient study design of deep mutational scans and optimization in protein engineering.

2.
medRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746151

RESUMO

While genome sequencing has transformed medicine by elucidating the genetic underpinnings of both rare and common complex disorders, its utility to predict clinical outcomes remains understudied. Here, we used artificial intelligence (AI) technologies to explore the predictive value of genome sequencing in forecasting clinical outcomes following surgery for congenital heart defects (CHD). We report results for a cohort of 2,253 CHD patients from the Pediatric Cardiac Genomics Consortium with a broad range of complex heart defects, pre- and post-operative clinical variables and exome sequencing. Damaging genotypes in chromatin-modifying and cilia-related genes were associated with an elevated risk of adverse post-operative outcomes, including mortality, cardiac arrest and prolonged mechanical ventilation. The impact of damaging genotypes was further amplified in the context of specific CHD phenotypes, surgical complexity and extra-cardiac anomalies. The absence of a damaging genotype in chromatin-modifying and cilia-related genes was also informative, reducing the risk for adverse postoperative outcomes. Thus, genome sequencing enriches the ability to forecast outcomes following congenital cardiac surgery.

3.
medRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746364

RESUMO

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 28 patients from 18 families carrying LOF variants in RBL2 , including fourteen new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were uniformly observed, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements and non-specific dysmorphic features. Common neuroimaging features were cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster , to investigate how disruption of the conserved RBL2 orthologueue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harboring RBL2 variants, including alterations in the head and brain morphology reminiscent of microcephaly, and perturbed locomotor behaviour. Surprisingly, in addition to its known role in controlling tissue growth during development, we find that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila , and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, this study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2 -linked neurodevelopmental disorder and suggests that restoring RBL2 expression through gene therapy approaches may ameliorate aspects of RBL2 LOF patient symptoms.

4.
Pediatr Cardiol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714589

RESUMO

The use of genetic testing has enhanced the diagnostic accuracy of heritable genetic cardiomyopathies. However, it remains unclear how genetic information is interpreted and incorporated into clinical practice for children with cardiomyopathy. The primary aim of this study was to understand how clinical practice differs regarding sequence variant classifications amongst pediatric cardiologists who treat children with cardiomyopathy. A secondary aim was to understand the availability of genetic testing and counseling resources across participating pediatric cardiomyopathy programs. An electronic survey was distributed to pediatric heart failure, cardiomyopathy, or heart transplantation physicians between August and September 2022. A total of 106 individual providers from 68 unique centers responded to the survey. Resources for genetic testing and genetic counseling vary among large pediatric cardiomyopathy programs. A minority of centers reported having a geneticist (N = 16, 23.5%) or a genetic counselor (N = 21, 31%) on faculty within the division of pediatric cardiology. A total of 9 centers reported having both (13%). Few centers (N = 13, 19%) have a formal process in place to re-engage patients who were previously discharged from cardiology follow-up if variant reclassification would alter clinical management. Clinical practice patterns were uniform in response to pathogenic or likely pathogenic variants but were more variable for variants of uncertain significance. Efforts to better incorporate genetic expertise and resources into the clinical practice of pediatric cardiomyopathy may help to standardize the interpretation of genetic information and better inform clinical decision-making surrounding heritable cardiomyopathies.

5.
J Clin Transl Sci ; 8(1): e65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690223

RESUMO

Introduction: Under enrollment of participants in clinical research is costly and delays study completion to impact public health. Given that research personnel make decisions about which strategies to pursue and participants are the recipients of these efforts, we surveyed research staff (n = 52) and participants (n = 4,144) affiliated with SPARK (Simons Foundation Powering Autism for Knowledge) - the largest study of autism in the U.S. - to understand their perceptions of effective recruitment strategies. Methods: In Study 1, research personnel were asked to report recruitment strategies that they tried for SPARK and to indicate which ones they would and would not repeat/recommend. In Study 2, SPARK participants were asked to indicate all the ways they heard about the study prior to enrollment and which one was most influential in their decisions to enroll. Results: Staff rated speaking with a SPARK-study-team member (36.5%), speaking with a medical provider (19.2%), word of mouth (11.5%), and a live TV news story (11.5%) as the most successful strategies. Participants most often heard about SPARK via social media (47.0%), speaking with a medical provider (23.1%), and an online search (20.1%). Research personnel's and participants' views on effective recruitment strategies often differed, with the exception of speaking with a medical provider. Conclusion: Results suggest that a combination of strategies is likely to be most effective in reaching diverse audiences. Findings have implications for the selection of strategies that meet a study's specific needs, as well as recruitment-strategy "combinations" that may enhance the influence of outreach efforts.

6.
J Pediatr Genet ; 13(1): 29-34, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567173

RESUMO

FOXP1 encodes a transcription factor involved in tissue regulation and cell-type-specific functions. Haploinsufficiency of FOXP1 is associated with a neurodevelopmental disorder: autosomal dominant mental retardation with language impairment with or without autistic features. More recently, heterozygous FOXP1 variants have also been shown to cause a variety of structural birth defects including central nervous system (CNS) anomalies, congenital heart defects, congenital anomalies of the kidney and urinary tract, cryptorchidism, and hypospadias. In this report, we present a previously unpublished case of an individual with congenital diaphragmatic hernia (CDH) who carries an approximately 3.8 Mb deletion. Based on this deletion, and deletions previously reported in two other individuals with CDH, we define a CDH critical region on chromosome 3p13 that includes FOXP1 and four other protein-coding genes. We also provide detailed clinical descriptions of two previously reported individuals with CDH who carry de novo, pathogenic variants in FOXP1 that are predicted to trigger nonsense-mediated mRNA decay. A subset of individuals with putatively deleterious FOXP4 variants has also been shown to develop CDH. Since FOXP proteins function as homo- or heterodimers and the homologs of FOXP1 and FOXP4 are expressed at the same time points in the embryonic mouse diaphragm, they may function together as a dimer, or in parallel as homodimers, to regulate gene expression during diaphragm development. Not all individuals with heterozygous, loss-of-function changes in FOXP1 develop CDH. Hence, we conclude that FOXP1 acts as a susceptibility factor that contributes to the development of CDH in conjunction with other genetic, epigenetic, environmental, and/or stochastic factors.

7.
Fam Cancer ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609522

RESUMO

INTRODUCTION: Orthodox Jewish women face unique social, cultural, and religious factors that may influence uptake of BRCA1/2 genetic testing. We examined the impact of a web-based decision aid (DA) on BRCA1/2 genetic testing intention/completion among Orthodox Jewish women. We conducted a single-arm pilot study among 50 Orthodox Jewish women who were given access to a web-based DA entitled RealRisks and administered serial surveys at baseline and 1 and 6 months after exposure to the DA. Descriptive statistics were conducted for baseline characteristics and study measures. Comparisons were made to assess changes in study measures over time. Fifty Orthodox Jewish women enrolled in the study with a mean age of 43.9 years (standard deviation [SD] 14.6), 70% Modern Orthodox, 2% with personal history of breast cancer, and 68% and 16% with a family history of breast or ovarian cancer, respectively. At baseline, 27 (54%) participants intended to complete genetic testing. Forty-three participants (86%) completed RealRisks and the 1-month survey and 38 (76%) completed the 6-month survey. There was a significant improvement in BRCA1/2 genetic testing knowledge and decrease in decisional conflict after exposure to the DA. At 1 month, only 20 (46.5%) completed or intended to complete genetic testing (p = 0.473 compared to baseline). While the DA improved genetic testing knowledge and reduced decisional conflict, genetic testing intention/completion did not increase over time. Future interventions should directly address barriers to BRCA1/2 genetic testing uptake and include input from leaders in the Orthodox Jewish community. GOV ID: NCT03624088 (8/7/18).

8.
J Clin Transl Sci ; 8(1): e64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655455

RESUMO

Background: SPARK launched in 2016 to build a US cohort of autistic individuals and their family members. Enrollment includes online consent to share data and optional consent to provide saliva for genomic analysis. SPARK's recruitment strategies include social media and support of a nation-wide network of clinical sites. This study evaluates SPARK's recruitment strategies to enroll a core study population. Methods: Individuals who joined between January 31, 2018, and May 29, 2019 were included in the analysis. Data include sociodemographic characteristics, clinical site referral, the website URL used to join, how the participant heard about SPARK, enrollment completion (online registration, study consents, and returning saliva sample), and completion of the baseline questionnaire. Logistic regressions were performed to evaluate the odds of core participant status (completing enrollment and baseline questionnaire) by recruitment strategy. Results: In total, 31,715 individuals joined during the study period, including 40% through a clinical site. Overall, 88% completed online registration, 46% returned saliva, and 38% were core participants. Those referred by a clinical site were almost twice as likely to be core participants. Those who directly visited the SPARK website or performed a Google search were more likely to be core participants than those who joined through social media. Discussion: Being a core participant may be associated with the "personal" connection and support provided by a clinical site and/or site staff, as well as greater motivation to seek research opportunities. Findings from this study underscore the value of adopting a multimodal recruitment approach that combines social media and a physical presence.

9.
Brain ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662784

RESUMO

Mutations in the SLC1A4 transporter lead to neurodevelopmental impairments, spastic tetraplegia, thin corpus callosum, and microcephaly in children. SLC1A4 catalyzes obligatory amino acid exchange between neutral amino acids, but the physiopathology of SLC1A4 disease mutations and progressive microcephaly remain unclear. Here, we examined the phenotype and metabolic profile of three Slc1a4 mouse models, including a constitutive Slc1a4-KO mouse, a knock-in mouse with the major human Slc1a4 mutation (Slc1a4-K256E), and a selective knockout of Slc1a4 in brain endothelial cells (Slc1a4tie2-cre). We show that Slc1a4 is a bona fide L-serine transporter at the BBB and that acute inhibition or deletion of Slc1a4 leads to a decrease in serine influx into the brain. This results in microcephaly associated with decreased L-serine content in the brain, accumulation of atypical and cytotoxic 1-deoxysphingolipids in the brain, neurodegeneration, synaptic and mitochondrial abnormalities, and behavioral impairments. Prenatal and early postnatal oral administration of L-serine at levels that replenish the serine pool in the brain rescued the observed biochemical and behavioral changes. Administration of L-serine till the second postnatal week also normalized brain weight in Slc1a4-E256 K mice. Our observations suggest that the transport of "non-essential" amino acids from the blood through the BBB is at least as important as that of essential amino acids for brain metabolism and development. We proposed that SLC1A4 mutations cause a BBB aminoacidopathy with deficits in serine import across the BBB required for optimal brain growth and leads to a metabolic microcephaly, which may be amenable to treatment with L-serine.

10.
Int J Neonatal Screen ; 10(2)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38651398

RESUMO

Screening newborns using genome sequencing is being explored due to its potential to expand the list of conditions that can be screened. Previously, we proposed the need for large-scale pilot studies to assess the feasibility of screening highly penetrant genetic neurodevelopmental disorders. Here, we discuss the initial experience from the GUARDIAN study and the systemic gaps in clinical services that were identified in the early stages of the pilot study.

11.
medRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645167

RESUMO

Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N=491,111) and African (N=21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best and worst performing quintiles for certain covariates. 28 covariates had significant PGSBMI-covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects - across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account non-linear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge GWAS effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

12.
Eur J Hum Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678163

RESUMO

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.

13.
Autism Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660979

RESUMO

The rare genetic variants 16p11.2 duplication and 16p11.2 deletion have opposing effects on brain structure and function, yet are associated with broadly similar clinical phenotypes that include autism, intellectual impairment, psychiatric illness, and motor difficulties. In recent years, studies have identified subtle distinctions between the phenotypic effects of 16p11.2 duplication and 16p11.2 deletion with respect to patterns of autism, intellectual impairment, and psychiatric illness. However, although divergent phenotypic findings in some motor domains have been reported, no study has yet made a comprehensive comparison of motor difficulties between 16p11.2 deletion and 16p11.2 duplication carriers to elucidate points of convergence and divergence. We sought to make such a comparison in a group of 133 16p11.2 deletion carriers, 122 duplication carriers, and 388 familial controls, hypothesizing that motor impairment would overall be greater in deletion than duplication carriers. In a series of regression models, we found that 16p11.2 deletion status tended to predict greater impairment along indices of gross motor function, but less impairment along indices of fine motor function. These findings point to a potential pattern of performance difficulties that could be investigated in future studies. Elucidating motor differences between 16p11.2 duplication and 16p11.2 deletion carriers may help in understanding the complex effect of 16p11.2 copy number variation and other rare genetic causes of autism.

14.
AJOB Empir Bioeth ; : 1-18, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643392

RESUMO

BACKGROUND: Autism self-advocates' views regarding genetic tests for autism are important, but critical questions about their perspectives arise. METHODS: We interviewed 11 autism self-advocates, recruited through autism self-advocacy websites, for 1 h each. RESULTS: Interviewees viewed genetic testing and its potential pros and cons through the lens of their own indiviudal perceived challenges, needs and struggles, especially concerning stigma and discrimination, lack of accommodations and misunderstandings from society about autism, their particular needs for services, and being blamed by others and by themselves for autistic traits. Their views of genetic testing tended not to be binary, but rather depended on how the genetic test results would be used. Interviewees perceived pros of genetic testing both in general and with regard to themselves (e.g., by providing "scientific proof" of autism as a diagnosis and possibly increasing availability of services). But they also perceived disadvantages and limitations of testing (e.g., possible eugenic applications). Participants distinguished between what they felt would be best for themselves and for the autistic community as a whole. When asked if they would undergo testing for themselves, if offered, interviewees added several considerations (e.g., undergoing testing because they support science in general). Interviewees were divided whether a genetic diagnosis would or should reduce self-blame, and several were wary of testing unless treatment, prevention or societal attitudes changed. Weighing these competing pros and cons could be difficult. CONCLUSIONS: This study, the first to use in-depth qualitative interviews to assess views of autism self-advocates regarding genetic testing, highlights key complexities. Respondents felt that such testing is neither wholly good or bad in itself, but rather may be acceptable depending on how it is used, and should be employed in beneficial, not harmful ways. These findings have important implications for practice, education of multiple stakeholders, research, and policy.

15.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559260

RESUMO

Accurate identification of germline de novo variants (DNVs) remains a challenging problem despite rapid advances in sequencing technologies as well as methods for the analysis of the data they generate, with putative solutions often involving ad hoc filters and visual inspection of identified variants. Here, we present a purely informatic method for the identification of DNVs by analyzing short-read genome sequencing data from proband-parent trios. Our method evaluates variant calls generated by three genome sequence analysis pipelines utilizing different algorithms-GATK HaplotypeCaller, DeepTrio and Velsera GRAF-exploring the assumption that a requirement of consensus can serve as an effective filter for high-quality DNVs. We assessed the efficacy of our method by testing DNVs identified using a previously established, highly accurate classification procedure that partially relied on manual inspection and used Sanger sequencing to validate a DNV subset comprising less confident calls. The results show that our method is highly precise and that applying a force-calling procedure to putative variants further removes false-positive calls, increasing precision of the workflow to 99.6%. Our method also identified novel DNVs, 87% of which were validated, indicating it offers a higher recall rate without compromising accuracy. We have implemented this method as an automated bioinformatics workflow suitable for large-scale analyses without need for manual intervention.

16.
J Autism Dev Disord ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578549

RESUMO

Genetic testing is recommended as part of an autism assessment, and most parents support genetic testing for their minor children. However, the impact on parents of receiving a monogenetic/ copy number variant diagnosis for autism in their child is not well understood. To explore this, we surveyed and interviewed parents of children in the SPARK study, a study of autism that includes genetic testing. Surveys were administered one month before and one and 12 months after parents received their child's genetic result. Interviews were conducted approximately one month after results disclosure. A genetic diagnosis (GD) for their child appeared to reduce parents' sense of self-blame and feelings of guilt, and this impact was relatively stable. The data also indicate a modest impact on parents' actions related to the condition, perceptions of themselves, and some aspects of life planning for their child, as measured by quantitative instruments at one month and 12 months after receipt of results. Other measures of parental identity and expectations for their child, in contrast, showed little change following receipt of genetic findings. Overall, parents who were told that no GD was identified showed minimal changes in their responses over time. These results suggest a discernable but relatively limited impact of genetic test results on parents of children with autism. These results should be reassuring to clinicians caring for children with autism and are consistent with studies in other areas of medicine that have suggested that genetic results tend to have fewer effects-negative or positive-than were anticipated.

17.
Am J Hum Genet ; 111(4): 742-760, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479391

RESUMO

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Assuntos
Deficiência Intelectual , Anormalidades Musculoesqueléticas , Animais , Criança , Humanos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiência Intelectual/genética , Mamíferos , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Drosophila
19.
Am J Med Genet A ; : e63578, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38425142

RESUMO

FEZF2 encodes a transcription factor critical to neurodevelopment that regulates other neurodevelopment genes. Rare variants in FEZF2 have previously been suggested to play a role in autism, and cases of 3p14 microdeletions that include FEZF2 share a neurodevelopmental phenotype including mild dysmorphic features and intellectual disability. We identified seven heterozygous predicted deleterious variants in FEZF2 (three frameshifts, one recurrent missense in two independent cases, one nonsense, and one complete gene deletion) in unrelated individuals with neurodevelopmental disorders including developmental delay/intellectual disability, autism, and/or attention-deficit/hyperactivity. Variants were confirmed to be de novo in five of seven cases and paternally inherited from an affected father in one. Predicted deleterious variants in FEZF2 may affect the expression of genes that are involved in fate choice pathways in developing neurons, and thus contribute to the neurodevelopmental phenotype. Future studies are needed to clarify the mechanism by which FEZF2 leads to this neurodevelopmental disorder.

20.
Gait Posture ; 110: 77-83, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547676

RESUMO

BACKGROUND: Individuals with PPP2R5D-related neurodevelopmental disorder have an atypical gait pattern characterized by ataxia and incoordination. Structured, quantitative assessments are needed to further understand the impact of these impairments on function. RESEARCH QUESTION: How do gait parameters and ambulatory function of individuals with PPP2R5D-related neurodevelopmental disorder compare to age and sex matched healthy norms? METHODS: Twenty-six individuals with PPP2R5D pathogenic genetic variants participated in this observational, single visit study. Participants completed at least one of the following gait assessments: quantitative gait analysis at three different speeds (preferred pace walking (PPW), fast paced walking (FPW) and running, six-minute walk test (6MWT), 10-meter walk run (10MWR), and timed up and go (TUG). Descriptive statistics were used to summarize gait variables. Percent of predicted values were calculated using published norms. Paired t-tests and regression analyses were used to compare gait variables. RESULTS: The median age of the participants was 8 years (range 4-27) and eighteen (69.2 %) were female. Individuals with PPP2R5D-related neurodevelopmental disorder walked slower and with a wider base of support than predicted for their age and sex. Stride velocity ranged from 48.9 % to 70.1 % and stride distance from 58.5 % to 81.9 % of predicted during PPW. Percent of predicted distance walked on the 6MWT ranged from 30.6 % to 71.1 % representing varied walking impairment. Increases in stride distance, not cadence, were associated with changes in stride velocity in FPW (R2 = 0.675, p =< 0.001) and running conditions (R2 = 0.918, p =< 0.001). SIGNIFICANCE: We quantitatively assessed the abnormal gait in individuals with PPP2R5D-related neurodevelopmental disorder. These impairments may affect ability to adapt to environmental changes and participation in daily life. Rehabilitative interventions targeting gait speed and balance may improve function and safety for individuals with PPP2R5D-related neurodevelopmental disorder.


Assuntos
Transtornos do Neurodesenvolvimento , Proteína Fosfatase 2 , Humanos , Feminino , Masculino , Criança , Adolescente , Transtornos do Neurodesenvolvimento/fisiopatologia , Pré-Escolar , Adulto Jovem , Adulto , Teste de Caminhada , Análise da Marcha , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Marcha/fisiologia , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA